The Argon Geochronology Experiment (AGE)

T. D. Swindle (PI), R. Bode, A. Fennema University of Arizona, Tucson AZ

A. Chutjian , J. A. MacAskill, and M. R. Darrach Jet Propulsion Laboratory, Pasadena CA

S. M. Clegg, R. C. Wiens, and D. Cremers Los Alamos National Laboratory, Los Alamos NM

> MIDP Workshop Arcadia, CA 27 July 2006

K-Ar dating

Measure abundance of K, ⁴⁰Ar; Calculate time since last thermal event

Measure abundances of O, Si, Mg, Ca, Fe, etc., ³He, ^{20,21,22}Ne, ^{36,38}Ar. Calculate time within ~1m of surface where reactions have occurred.

AGE flow diagram

Acquire sample, load into crucible. Do LIBS analysis for elemental abundances. Load sample into vacuum, pump down. Melt sample, release gas, getter non-noble species. Analyze gas (Paul trap). Measure volume, calculate mass.

Vacuum System Schematic

Sample Manipulation Mechanism

Samples are contained in the "dimples" visible on each arm. Sample loading is to the right, the vacuum system (not attached) to the left.

Operation of the LIBS Instrument

Components of the LIBS Instrument

L = Nd:YAG laser FOC = fiber optic

M = mirror S = spectrograph

LP = laser pulse AD = array detector

CL = lens GE = electronics

P = plasma C = computer

T = target

Schematic of the Mineral Heater Oven

Heating is via six tungsten filaments (two shown). The series of radiation shields makes it possible to achieve a sample temperature of 1500C with minimal radiation losses.

QMSA Sensor Overview

The packaged TGA prior to

The TGA on ISS

Results ... mass spectra ...

UDMH QMSA SPECTRUM

The Quadrupole Ion Trap Mass Spectrometer

Quadrupole ion trap and Quadrupole mass filter invented by Paul and Steinwedel in 1960

W. Paul awarded Nobel Prize in Physics 1989

How does the trapping really work?

Consider applying a voltage to the ring electrode

Say 1000 V_{0-P} at 1 MHz

Create an ion in this quadrupole field

Pause and look at potential surface

Ion rolls down slope to trap center = radial focusing
Ion reaches trap center, can continue downhill =
axial defocusing

Restart voltage, ring at -1000 V end-cap at 0 V, rotate figure by 90°

Get axial focusing and radial defocusing

Miniaturization: Board-Level RF Electronics for Driving a QMSA or Paul Trap

Further miniaturization to a System-on-a-Chip (SoC) is proceeding.

Argon Isotopes with Paul Trap and Digital RF Board

Isotope Ratios for Neon

How do we balance the forces?

In practice $U = 0 \rightarrow a_z = 0$; operate along this line —

$$q_z = \frac{4eV}{mr_0^2 \Omega^2}$$

$$-a_z = \frac{8eU}{mr_0^2 \Omega^2}$$

Can see that for $a_z = 0$ the stable/unstable boundary occurs at $\mathbf{q}_z = \mathbf{0.908}$.

Mass Discrimination by DC Offset on Trap Ring

Elemental Abundances with the LIBS

(a) LIBS calibration for K in basalts, at 7 torr pressure.

(b) Comparisons with two martian meteorites.

(c) Blind test comparison of LIBS (solid line) to actual abundances for two "unknown" basalt samples.

Progress Summary

Sample Introduction and Heating

- developed a 6-armed sample loading mechanism
- developed a resealable (elastomer) vacuum chamber
- developed radiatively-heated sample oven for operation to 1500 C

Laser-Induced Breakdown Spectroscopy (LIBS)

- conducted lab & field tests of a high- and low-resolution spectrograph
- tested a suitable Nd:YAG Q-switched laser (1 Hz, 6-10 ns, 20-25 mJ/pulse)
- quantitatively detected K and other elemental abundances in minerals

Miniature Quadrupole and Paul Trap MS

- assembled and tested a QMSA system to interface to the sample oven
- designed & tested a new-type digital RF generator board with excellent control of frequency and THD
- using the Paul Trap, demonstrated good isotope separation for the gases ^{20,21,22}Ne+, ^{36,38,40}Ar+, ^{32,34}S+, and ^{83,84}Kr+
- demonstrated static operation of a commercial RGA with loading from sample oven
- demonstrated sensitivity to 10^{-12} torr P_{Ar} with RGA, at 10^{-9} torr total background pressure
- characterized background evolution of Ar from oven while cold, and while hot (& empty).